Constructions of S-boxes with uniform sharing

Kerem Varici¹ Svetla Nikova¹ Ventzislav Nikov² Vincent Rijmen¹

¹imec-COSIC, KU Leuven, Belgium

²NXP Semiconductors, Belgium

September, 2017

Threshold Implementations

Threshold Implementation (TI) [Nikova, Rechberger, Rijmen, 2006] is a provably secure Masking Scheme based on Secret Sharing and Multiparty Computation.

- TI protects implementations against any order DPA.
- TI is secure in a circuit with glitches
- Efficient in HW
- Independent of the HW technology

Threshold Implementations

Properties: Correctness, Non-completeness, [optional] Uniformity

Uniformity implies that if unshared function is a permutation, the shared function should also be a permutation.

Threshold Implementations

Two S-boxes S_1 and S_2 are *affine equivalent* if there exists a pair of affine permutations A and B, such that $S_1 = A \circ S_2 \circ B$.

4 affine equivalent classes of $3x3$ S-boxes 302 affine equivalent classes of 4x4 S-boxes, [CHES2012] A - Affine, Q - Quadratic, C - Cubic

Our approach

- Most papers so far have studied TI sharings for given S-boxes
- Here we go the opposite way: we start from $n \times n$ S-boxes with known sharings and then construct new $(n + 1) \times (n + 1)$ S-boxes from them, with desired sharings.

Shannon's Expansion

Let F be a Boolean vectorial function of *n* variables $\bar{x} = x_1, ..., x_n$.

$$
F: \{0,1\}^n \to \{0,1\}^m
$$

Let define $\bar{x}_i = x_1, ..., x_{i-1}, x_{i+1}, ..., x_n$ and two new Boolean vectorial functions of $n - 1$ variables as follows:

$$
F_{x_i=1}(\bar{x}_i) = F(x_1, ..., x_{i-1}, x_i = 1, x_{i+1}, ..., x_n)
$$
 and

$$
F_{x_i=0}(\bar{x}_i) = F(x_1, ..., x_{i-1}, x_i = 0, x_{i+1}, ..., x_n)
$$
 then

F can be written as:

$$
F(\bar{x}) = x_i F_{x_i=1}(\bar{x}_i) + (x_i + 1) F_{x_i=0}(\bar{x}_i)
$$

Application of Shannon's Expansion to S-boxes

Given two $n \times n$ S-boxes (permutations):

$$
S_1(\bar{x}) = (t_1, t_2, ..., t_n) \text{ and} \\ S_2(\bar{x}) = (u_1, u_2, ..., u_n)
$$

then using Shannon's expansion one gets an $(n + 1) \times (n + 1)$ S-box $S(x_1, \ldots, x_n, x_{n+1}) = (y_1, \ldots, y_n, y_{n+1})$:

$$
y_i = x_{n+1}t_i + (1 + x_{n+1})u_i, \text{ for } i = 1,...,n
$$

\n
$$
y_{n+1} = x_{n+1}F(\bar{x}) + (1 + x_{n+1})G(\bar{x})
$$

\nwhere *F* and *G* are Boolean functions of *n* inputs.

Theorem 1

Let S be the S-box generated by using Shannon's expansion using two permutations S_1 and S_2 . Then, S is a permutation if and only if

$$
G(\bar{x}) = F(S_1^{-1}(S_2(\bar{x}))) + 1 \text{ or equivalently}
$$

$$
G = S_2 \circ S_1^{-1} \circ F + 1
$$

holds.

First fix S_1 to a class representative and go (class per class) then we will explore two approaches:

- $S_2 = S_1$ implies $S = (S_1, x_{n+1} + F)$, next we vary F over all possible Boolean functions
- $S_2 \neq S_1$ the general case, next we vary S_2 over all possible S-boxes and F over all possible Boolean functions

Results of Theorem [1](#page-7-0) first approach

Table: Extension of 3-bit S-box classes into 4-bit S-box classes

3-bit Class	4-bit Class			
				\triangleright Table

 A - Affine, Q - Quadratic, C - Cubic

- \bullet \mathcal{Q}_{299}^4 can't be obtained
- The extensions in blue were already known from [CHES2012]
- The obtained 4 cubic classes are the only 4 which have uniform sharing with 4 shares [CHES2012]

Results of Theorem [1](#page-7-0) first approach

Table: Extension of non-cubic 4-bit S-box classes into 5-bit S-box classes

- Constructed 23 out of 75 quadratic classes [FSE2017]
- \mathcal{Q}_{30}^{5} , \mathcal{Q}_{32}^{5} no uniform sharing is known [FSE2017]
- Now we can obtain uniform sharing with 4 shares for them

Theorem 2

Given any $n \times n$ S-box S_1 which has a **uniform sharing** with m shares and any Boolean function F with n variables which also has a uniform sharing with m shares. If S_2 is chosen in one of the $n + 1$ forms:

$$
S_1(\bar{x}), S_1(\bar{x} + \bar{1}_i)
$$
 for $i = 1, ..., n$

then the generated $(n + 1) \times (n + 1)$ -bit S-box S by using Shannon's expansion with S_1 , S_2 and F has also a uniform sharing with *m* shares.

Results of Theorem [1](#page-7-0) second approach

This approach generates all S-boxes which can be obtained with this construction.

Notice that 8 out of the 11 belong to Optimal Golden S-boxes. Recall there are exactly 8 classes of best 4-bit S-boxes. i.e., ${Diff(S) = 4, Lin(S) = 8, deg = 3}$ (Leander, Poschmann 2007)

Still work in progress!

Double application of Shannon's Expansion to S-boxes

Given four $n \times n$ S-boxes (permutations):

$$
S_1(\bar{x}) = (t_1, t_2, \ldots, t_n), S_2(\bar{x}) = (u_1, u_2, \ldots, u_n),
$$

$$
S_3(\bar{x}) = (v_1, v_2, \ldots, v_n) \text{ and } S_4(\bar{x}) = (w_1, w_2, \ldots, w_n)
$$

using Shannon's expansion one can get an $(n+2) \times (n+2)$ S-box $S(x_1, \ldots, x_n, x_{n+1}, x_{n+2}) = (y_1, \ldots, y_n, y_{n+1}, y_{n+2})$:

for $i=1,\ldots,n$ and where F_j and G_j , $j=1,2,3,4$ are Boolean functions of n inputs.

Theorem 3

Let S be the S-box generated with the Shannon's expansion using four permutations S_1 , S_2 , S_3 and S_4 . Then, S is a permutation if and only if both

$$
F_1(S_1^{-1}(\bar{x})) = G_2(S_4^{-1}(\bar{x})) + 1 = F_2(S_3^{-1}(\bar{x})) = G_1(S_2^{-1}(\bar{x})) + 1
$$

\nand
\n
$$
F_3(S_1^{-1}(\bar{x})) = G_4(S_4^{-1}(\bar{x})) + 1 = F_4(S_3^{-1}(\bar{x})) + 1 = G_3(S_2^{-1}(\bar{x}))
$$

\nhold.

Conclusion

We have shown that Shannon's expansion can be used to construct uniform sharing for certain affine equivalent classes of S-boxes.

Our goal is to generate all 4-bit S-box classes from the 3-bit S-box classes. There are still some classes we cannot ...