Constructions of S-boxes with uniform sharing

Kerem Varici¹ Svetla Nikova¹ Ventzislav Nikov² Vincent Rijmen¹

¹imec-COSIC, KU Leuven, Belgium

²NXP Semiconductors, Belgium

September, 2017

Threshold Implementations

Threshold Implementation (TI) [Nikova, Rechberger, Rijmen, 2006] is a provably secure Masking Scheme based on Secret Sharing and Multiparty Computation.

- TI protects implementations against any order DPA.
- TI is secure in a circuit with glitches
- Efficient in HW
- Independent of the HW technology

Threshold Implementations

Properties: Correctness, Non-completeness, [optional] Uniformity

Uniformity implies that if unshared function is a permutation, the shared function should also be a permutation.

Threshold Implementations

Two S-boxes S_1 and S_2 are *affine equivalent* if there exists a pair of affine permutations A and B, such that $S_1 = A \circ S_2 \circ B$.

romork	unshared	3 shares				4	share	5 shares	
Ternark		1	2	3	4	1	2	3	1
affine	1	1				1			1
quadratic	6	5	1			6			6
cubic in A16	30		28	2			30		30
cubic in A ₁₆	114			113	1			114	114
cubic in S16 \ A16	151					4	22	125	151

4 affine equivalent classes of 3x3 S-boxes 302 affine equivalent classes of 4x4 S-boxes, [CHES2012] \mathcal{A} - Affine, \mathcal{Q} - Quadratic, \mathcal{C} - Cubic

Our approach

- Most papers so far have studied TI sharings for given S-boxes
- Here we go the opposite way: we start from $n \times n$ S-boxes with known sharings and then construct new $(n + 1) \times (n + 1)$ S-boxes from them, with desired sharings.

Shannon's Expansion

Let *F* be a Boolean vectorial function of *n* variables $\bar{x} = x_1, ..., x_n$:

$$F: \{0,1\}^n \to \{0,1\}^m$$

Let define $\bar{x}_i = x_1, ..., x_{i-1}, x_{i+1}, ..., x_n$ and two new Boolean vectorial functions of n-1 variables as follows:

$$\begin{array}{lll} {F_{{x_i} = 1}(\bar {x_i})} & = & {F({x_1},...,{x_{i - 1}},{x_i} = 1,{x_{i + 1}},...,{x_n})} & \text{and} \\ {F_{{x_i} = 0}(\bar {x_i})} & = & {F({x_1},...,{x_{i - 1}},{x_i} = 0,{x_{i + 1}},...,{x_n})} & \text{then} \end{array}$$

F can be written as:

$$F(\bar{x}) = x_i F_{x_i=1}(\bar{x}_i) + (x_i + 1) F_{x_i=0}(\bar{x}_i)$$

Application of Shannon's Expansion to S-boxes

Given two $n \times n$ S-boxes (permutations):

$$egin{array}{rcl} S_1(ar{x}) &=& (t_1, t_2, \dots, t_n) ext{ and } \ S_2(ar{x}) &=& (u_1, u_2, \dots, u_n) \end{array}$$

then using Shannon's expansion one gets an $(n + 1) \times (n + 1)$ S-box $S(x_1, \ldots, x_n, x_{n+1}) = (y_1, \ldots, y_n, y_{n+1})$:

$$y_i = x_{n+1}t_i + (1+x_{n+1})u_i, \quad \text{for } i = 1, \dots, n$$

$$y_{n+1} = x_{n+1}F(\bar{x}) + (1+x_{n+1})G(\bar{x})$$

where F and G are Boolean functions of n inputs.

Theorem 1

Let S be the S-box generated by using Shannon's expansion using two permutations S_1 and S_2 . Then, S is a permutation if and only if

$$egin{array}{rcl} G(ar{x}) &=& F(S_1^{-1}(S_2(ar{x})))+1 \ {\it or \ equivalently} \ G &=& S_2 \circ S_1^{-1} \circ F+1 \end{array}$$

holds.

First fix S_1 to a class representative and go (class per class) then we will explore two approaches:

- $S_2 = S_1$ implies $S = (S_1, x_{n+1} + F)$, next we vary F over all possible Boolean functions
- $S_2 \neq S_1$ the general case, next we vary S_2 over all possible S-boxes and F over all possible Boolean functions

Results of Theorem 1 first approach

Table: Extension of 3-bit S-box classes into 4-bit S-box classes

3-bit Class	4-bit (Class		
$ \begin{array}{c} \mathcal{A}_0^3 \\ \mathcal{Q}_1^3 \\ \mathcal{Q}_2^3 \\ \mathcal{Q}_3^3 \end{array} $	$\begin{array}{c c} & \mathcal{A}_{0}^{4}, \\ & \mathcal{C}_{3}^{4}, \\ & \mathcal{C}_{13}^{4}, \\ & \mathcal{C}_{301}^{4}, \end{array}$	$\mathcal{C}_{1}^{4},\ \mathcal{Q}_{4}^{4},\ \mathcal{Q}_{12}^{4},\ \mathcal{Q}_{300}^{4}$	$\mathcal{Q}_{4}^{4} \ \mathcal{Q}_{294}^{4} \ \mathcal{Q}_{293}^{4}$	- Table

 ${\mathcal A}$ - Affine, ${\mathcal Q}$ - Quadratic, ${\mathcal C}$ - Cubic

- \mathcal{Q}_{299}^4 can't be obtained
- The extensions in blue were already known from [CHES2012]
- The obtained 4 cubic classes are the only 4 which have uniform sharing with 4 shares [CHES2012]

Results of Theorem 1 first approach

Table: Extension of non-cubic 4-bit S-box classes into 5-bit S-box classes

4-bit Class	5-bit Class
$\begin{array}{c} \mathcal{A}_{0}^{4} \\ \mathcal{Q}_{4}^{4} \\ \mathcal{Q}_{12}^{4} \\ \mathcal{Q}_{293}^{4} \\ \mathcal{Q}_{294}^{4} \\ \mathcal{Q}_{299}^{4} \\ \mathcal{Q}_{299}^{4} \\ \mathcal{Q}_{300}^{4} \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

- Constructed 23 out of 75 quadratic classes [FSE2017]
- $\mathcal{Q}_{30}^5, \mathcal{Q}_{32}^5$ no uniform sharing is known [FSE2017]
- Now we can obtain uniform sharing with 4 shares for them

Theorem 2

Given any $n \times n$ S-box S_1 which has a **uniform sharing** with m shares and any Boolean function F with n variables which also has a **uniform sharing** with m shares. If S_2 is chosen in one of the n + 1 forms:

$$S_1(\bar{x}), S_1(\bar{x} + \bar{1}_i)$$
 for $i = 1, ..., n$

then the generated $(n + 1) \times (n + 1)$ -bit S-box S by using Shannon's expansion with S_1 , S_2 and F has also a **uniform sharing** with m shares.

Results of Theorem 1 second approach

This approach generates all S-boxes which can be obtained with this construction.

From	3-bit	S-box	classes	we	generated	all	the	4-bit	classes	except:
------	-------	-------	---------	----	-----------	-----	-----	-------	---------	---------

193	196	197	231	270	272	273	278	282	283	295
	G7		G ₁₃	G ₄	G ₆		G_5	G ₃	G ₁₂	G ₁₁

Notice that 8 out of the 11 belong to Optimal Golden S-boxes. Recall there are exactly 8 classes of best 4-bit S-boxes. i.e., $\{Diff(S) = 4, Lin(S) = 8, deg = 3\}$ (Leander, Poschmann 2007)

Still work in progress!

Double application of Shannon's Expansion to S-boxes

Given four $n \times n$ S-boxes (permutations):

$$S_1(\bar{x}) = (t_1, t_2, \dots, t_n), S_2(\bar{x}) = (u_1, u_2, \dots, u_n),$$

$$S_3(\bar{x}) = (v_1, v_2, \dots, v_n) \text{ and } S_4(\bar{x}) = (w_1, w_2, \dots, w_n)$$

using Shannon's expansion one can get an $(n + 2) \times (n + 2)$ S-box $S(x_1, \ldots, x_n, x_{n+1}, x_{n+2}) = (y_1, \ldots, y_n, y_{n+1}, y_{n+2})$:

Уi	=	$x_{n+2}[x_{n+1}t_i + (1 + x_{n+1})u_i]$	+	$(1 + x_{n+2})[x_{n+1}v_i + (1 + x_{n+1})w_i]$
y_{n+1}	=	$x_{n+2}[x_{n+1}F_1(\bar{x}) + (1 + x_{n+1})G_1(\bar{x})]$	+	$(1 + x_{n+2})[x_{n+1}F_2(\bar{x}) + (1 + x_{n+1})G_2(\bar{x})]$
yn+2	=	$x_{n+2}[x_{n+1}F_3(\bar{x}) + (1 + x_{n+1})G_3(\bar{x})]$	+	$(1 + x_{n+2})[x_{n+1}F_4(\bar{x}) + (1 + x_{n+1})G_4(\bar{x})]$

for i = 1, ..., n and where F_j and G_j , j = 1, 2, 3, 4 are Boolean functions of n inputs.

Theorem 3

Let S be the S-box generated with the Shannon's expansion using four permutations S_1 , S_2 , S_3 and S_4 . Then, S is a permutation if and only if both

$$F_1(S_1^{-1}(\bar{x})) = G_2(S_4^{-1}(\bar{x})) + 1 = F_2(S_3^{-1}(\bar{x})) = G_1(S_2^{-1}(\bar{x})) + 1$$

and
$$F_3(S_1^{-1}(\bar{x})) = G_4(S_4^{-1}(\bar{x})) + 1 = F_4(S_3^{-1}(\bar{x})) + 1 = G_3(S_2^{-1}(\bar{x}))$$

hold

Conclusion

We have shown that Shannon's expansion can be used to construct uniform sharing for certain affine equivalent classes of S-boxes.

Our goal is to generate all 4-bit S-box classes from the 3-bit S-box classes. There are still some classes we cannot ...