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Threshold Implementations

Threshold Implementation (TI) [Nikova, Rechberger, Rijmen, 2006]
is a provably secure Masking Scheme based on Secret Sharing and
Multiparty Computation.

• TI protects implementations against any order DPA.

• TI is secure in a circuit with glitches

• Efficient in HW

• Independent of the HW technology
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Threshold Implementations

Properties: Correctness, Non-completeness, [optional] Uniformity

Uniformity implies that if unshared function is a permutation, the
shared function should also be a permutation.
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Threshold Implementations

Two S-boxes S1 and S2 are affine equivalent if there exists a pair
of affine permutations A and B, such that S1 = A ◦ S2 ◦ B.

4 affine equivalent classes of 3x3 S-boxes
302 affine equivalent classes of 4x4 S-boxes, [CHES2012]
A - Affine, Q - Quadratic, C - Cubic

back-to-3 back-to-4
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Our approach

• Most papers so far have studied TI sharings for given S-boxes

• Here we go the opposite way:
we start from n × n S-boxes with known sharings and then
construct new (n + 1)× (n + 1) S-boxes from them, with
desired sharings.
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Shannon’s Expansion

Let F be a Boolean vectorial function of n variables x̄ = x1, ..., xn:

F : {0, 1}n → {0, 1}m

Let define x̄i = x1, ..., xi−1, xi+1, ..., xn and two new
Boolean vectorial functions of n − 1 variables as follows:

Fxi=1(x̄i ) = F (x1, ..., xi−1, xi = 1, xi+1, ..., xn) and

Fxi=0(x̄i ) = F (x1, ..., xi−1, xi = 0, xi+1, ..., xn) then

F can be written as:

F (x̄) = xiFxi=1(x̄i ) + (xi + 1)Fxi=0(x̄i )
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Application of Shannon’s Expansion to S-boxes

Given two n × n S-boxes (permutations):

S1(x̄) = (t1, t2, . . . , tn) and

S2(x̄) = (u1, u2, . . . , un)

then using Shannon’s expansion one gets an (n + 1)× (n + 1)
S-box S(x1, . . . , xn, xn+1) = (y1, . . . , yn, yn+1):

yi = xn+1ti + (1 + xn+1)ui , for i = 1, . . . , n
yn+1 = xn+1F (x̄) + (1 + xn+1)G (x̄)
where F and G are Boolean functions of n inputs.
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Theorem 1

Let S be the S-box generated by using Shannon’s expansion using
two permutations S1 and S2. Then, S is a permutation if and only
if

G (x̄) = F (S−1
1 (S2(x̄))) + 1 or equivalently

G = S2 ◦ S−1
1 ◦ F + 1

holds.

First fix S1 to a class representative and go (class per class) then
we will explore two approaches:

• S2 = S1 implies S = (S1, xn+1 + F ), next we vary F over all
possible Boolean functions

• S2 6= S1 the general case, next we vary S2 over all possible
S-boxes and F over all possible Boolean functions
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Results of Theorem 1 first approach

Table: Extension of 3-bit S-box classes into 4-bit S-box classes

3-bit Class 4-bit Class

A3
0 A4

0, C4
1 , Q4

4

Q3
1 C4

3 , Q4
4, Q4

294

Q3
2 C4

13, Q4
12, Q4

293

Q3
3 C4

301, Q4
300

Table

A - Affine, Q - Quadratic, C - Cubic

• Q4
299 can’t be obtained

• The extensions in blue were already known from [CHES2012]

• The obtained 4 cubic classes are the only 4 which have
uniform sharing with 4 shares [CHES2012]

9 / 15



Introduction Constructions of S-boxes with uniform sharing Conclusion and Future Work

Results of Theorem 1 first approach

Table: Extension of non-cubic 4-bit S-box classes into 5-bit S-box classes

4-bit Class 5-bit Class

A4
0 Q5

0,Q5
1,Q5

14

Q4
4 Q5

1,Q5
2,Q5

3,Q5
15,Q5

18

Q4
12 Q5

4,Q5
6,Q5

13,Q5
17,Q5

20,Q5
21

Q4
293 Q5

13,Q5
24,Q5

31

Q4
294 Q5

3,Q5
5,Q5

12,Q5
16,Q5

19,Q5
23

Q4
299 Q5

7,Q5
22

Q4
300 Q5

30,Q5
32

Table

• Constructed 23 out of 75 quadratic classes [FSE2017]

• Q5
30,Q5

32 no uniform sharing is known [FSE2017]

• Now we can obtain uniform sharing with 4 shares for them
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Theorem 2

Given any n × n S-box S1 which has a uniform sharing with m
shares and any Boolean function F with n variables which also has
a uniform sharing with m shares.
If S2 is chosen in one of the n + 1 forms:

S1(x̄), S1(x̄ + 1̄i ) for i = 1, ..., n

then the generated (n + 1)× (n + 1)-bit S-box S by using
Shannon’s expansion with S1, S2 and F has also a uniform
sharing with m shares.
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Results of Theorem 1 second approach

This approach generates all S-boxes which can be obtained with
this construction.

From 3-bit S-box classes we generated all the 4-bit classes except:

193 196 197 231 270 272 273 278 282 283 295

G7 G13 G4 G6 G5 G3 G12 G11

Notice that 8 out of the 11 belong to Optimal Golden S-boxes.
Recall there are exactly 8 classes of best 4-bit S-boxes. i.e.,
{Diff (S) = 4, Lin(S) = 8, deg = 3} (Leander, Poschmann 2007)

Still work in progress!
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Double application of Shannon’s Expansion to S-boxes

Given four n × n S-boxes (permutations):

S1(x̄) = (t1, t2, . . . , tn),S2(x̄) = (u1, u2, . . . , un),

S3(x̄) = (v1, v2, . . . , vn) and S4(x̄) = (w1,w2, . . . ,wn)

using Shannon’s expansion one can get an (n + 2)× (n + 2) S-box
S(x1, . . . , xn, xn+1, xn+2) = (y1, . . . , yn, yn+1, yn+2):

yi = xn+2[xn+1ti + (1 + xn+1)ui ] + (1 + xn+2)[xn+1vi + (1 + xn+1)wi ]
yn+1 = xn+2[xn+1F1(x̄) + (1 + xn+1)G1(x̄)] + (1 + xn+2)[xn+1F2(x̄) + (1 + xn+1)G2(x̄)]
yn+2 = xn+2[xn+1F3(x̄) + (1 + xn+1)G3(x̄)] + (1 + xn+2)[xn+1F4(x̄) + (1 + xn+1)G4(x̄)]

for i = 1, . . . , n and where Fj and Gj , j = 1, 2, 3, 4 are Boolean
functions of n inputs.
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Theorem 3

Let S be the S-box generated with the Shannon’s expansion using
four permutations S1, S2, S3 and S4. Then, S is a permutation if
and only if both

F1(S−1
1 (x̄)) = G2(S−1

4 (x̄)) + 1 = F2(S−1
3 (x̄)) = G1(S−1

2 (x̄)) + 1

and

F3(S−1
1 (x̄)) = G4(S−1

4 (x̄)) + 1 = F4(S−1
3 (x̄)) + 1 = G3(S−1

2 (x̄))

hold.
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Conclusion

We have shown that Shannon’s expansion can be used to construct
uniform sharing for certain affine equivalent classes of S-boxes.

Our goal is to generate all 4-bit S-box classes from the 3-bit S-box
classes. There are still some classes we cannot ...
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